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LINEARIZED EULER EQUATIONS

� Project: linearized Euler equations for ow past a thin airfoil.

� Uniform ( � = 1; u =M1; v = 0 ) at inow.

� Reference state for the local linearization: uniform ow

� Simplify the equations by assuming constant temperature, i.e.

Pressure = �.
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Equations

� The Euler equations for ow about a slender body in two

dimensions can be written as (before linearization)

@Q

@t
+
@E(Q)

@x
+
@F (Q)

@y
= 0 (1)

with

Q =

0
@ �

�u

�v

1
A ; E =

0
@ �u

�u2 + �

�uv

1
A ; F =

0
@ �v

�uv

�v2 + �

1
A (2)

� Note: Q;E; F are 3� 1 vectors.
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Quasi-Linear Form

� Rewrite in quasi-linear form, using e.g.

@E

@x
=

@E

@Q

@Q

@x
= A

@Q

@x

@Q

@t
+A

@Q

@x
+B

@Q

@y
= 0 (3)

A =

0
@ 0 1 0

�u2 + 1 2u 0

�uv v u

1
A ; B =

0
@ 0 0 1

�uv v u

�v2 + 1 0 2v

1
A (4)
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Linearized Form

� Freeze A and B at the reference state � = 1; u =M1; v = 0

@Q

@t
+A

@Q

@x
+B

@Q

@y
= 0 (5)

A =

0
@ 0 1 0

�M2
1 + 1 2M1 0

0 0 M1

1
A ; B =

0
@ 0 0 1

0 0 M1

1 0 0

1
A (6)

� The small disturbance form of the Euler equations where �; u and

v are the pertubation components from a uniform ow in the x

direction.

� The Mach number is M1 and the equations can be used to study

subsonic to supersonic small disturbance ow over slender bodies

or past surfaces with small surface variations.
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� The matrix A has real distinct eigenvalues

M1;M1 + 1;M1 � 1 and B the eigenvalues 0; 1;�1,

� The system is hyperbolic in time.
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Geomerty

� The grid is uniform in �1 � x � 3:0 and 0 � y � 2

� At the lower surface, a biconvex thin airfoil, � is the thickness.

ywall = �x(1� x)=2 0 � x � 1 (7)

ywall = 0 x � 0; x � 1 (8)
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y
wall

 =τ x(1−x)u = M∞
v = 0

X
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Boundary Conditions

� At inow (x = �1):�x �u =M1; �v = 0, set @�
@x = 0.

� At the top (y = 2):�x all the variables � = 1; u =M1; v = 0.

� At outow (x = 3): use @Q
@x = 0.

� Assume that v is speci�ed at the lower boundary (y = 0) in x

using thin airfoil conditions, that is

v =M1
dywall
dx

imposed at y = 0 (9)
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Euler Explicit/Flux Splitting

� Euler explicit time di�erening (h = �t)

Q(n+1) = Q(n) + hR(Q)(n) (10)

R(Q) = �A
@Q

@x
�B

@Q

@y

� Uniform grid: xj;k = (j � 1)�x, yj;k = (k � 1)�y.

� Matries A;B: � ux split into A+; B+ and A�; B�
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� New system to be solved with

R(Q)
(n)
j;k = �A+�bxQ

(n)
j;k �A��fxQ

(n)
j;k

�B+�byQ
(n)
j;k �B��fyQ

(n)
j;k (11)

� �bx is a backward di�erencing operator

� �fx is a forward di�erencing operator.

� Equation 10 along with Eq. 11 integrated from uniform initial

condition Q(0) =

0
@ 1

M1

0

1
A to a steady state.
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Template Code

� A sample Matlab code is provided for you.

� Euler explicit time di�erencing with central space di�erencing.

� Unstable for all CFL

1. Will run for awhile at low CFL.

2. Try CFL = 0:1 and nx = 10

3. nx points on the airfoil, so �x = 1:0=(nx� 1),

4. Let �y = �x

5. Produces plots of Cp = (�� 1)=(0:5 �M2
1) at the wall

6. Density contours, and residual history, jjRjj2.
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% Euler_template V1.0

% Final Project

%

% THP 04/2K+1

% Linearized Euler Code for A Thin Circular Arc Airfoil

%

% Flow is Assumed to be rho = 1, u = M_inf , v = 0 at Inflow

% Linearization is about rho = 1, u = M_inf, v = 0

% Thin Airfoil BC

%

% Euler equations are written as

% ( Pressure = rho is used i.e. Constant Temperature)

%

% DQ DQ DQ

% -- + A -- + B -- = 0

% Dt Dx Dy

%

% where: | 0 1 0 | | rho |

% A = | -M_inf^2 2 M_inf 0 |, Q = | rho u |

% | 0 0 M_inf | | rho v |
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%

% | 0 0 1 |

% B = | 0 0 M_inf |

% | 1 0 0 |

% M_inf : Free Stream Mach number

% nx : Number of points on airfoil (x=0,1)

%

% Inputs:

% cfl : dt = min(dx,dy)*cfl/(M_inf+1 + 1)

% where Spectral radius of A is (M_inf+1) and B is (1)

% nmax : Number of time steps to go

%

clear;

M_inf = 0.8; % remove comment % $$$ M_inf = input('Enter M_inf = ');

% Grid Generation

xmin = -1.0;

xmax = 3.0;

ymin = 0.0;
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ymax = 2.0;

nx = 10; % $$$ nx = input('Enter number of points on body = ');

dx = 1.0/(nx-1);

dy = dx;

x = [xmin:dx:xmax]';

y = [ymin:dy:ymax]';

jmax = size(x,1);

kmax = size(y,1);

[X,Y] = meshgrid(x,y);

jle = nx; jte = 2*nx-1;

fprintf(' X of Leading edge point = %g

X of trailing edge point = %g \n',x(jle),x(jte));

% Surface Definition

tau = 0.1; % tau = input('Enter tau = ');

ys = zeros(jmax,1);

s = [jle:jte];
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ys(s) = tau*0.5*x(s).*(1.0-x(s));

% Initialize Q's

Q(:,:,1) = ones(jmax,kmax,1); % rho

Q(:,:,2) = M_inf*ones(jmax,kmax,1); % rho u

Q(:,:,3) = zeros(jmax,kmax,1); % rho v

% Jacobian Matrices

A = zeros(3,3);

B = zeros(3,3);

A(1,2) = 1.0;

A(2,1) = -M_inf^2 + 1;

A(2,2) = 2.0*M_inf;

A(3,3) = M_inf;

B(1,3) = 1;

B(2,3) = M_inf;

B(3,1) = 1;

11-4



% Thin airfoil BC v = M_inf D(ys)/Dx

Q(s,1,3) = M_inf*(ys(s+1) - ys(s-1))*0.5/dx;

% Indices

J = [1:jmax];

K = [1:kmax];

JM = [2:jmax-1];

KM = [2:kmax-1];

% Inputs

cfl = input('Enter cfl = ');

nmax = input('Enter nmax = ');

dt = min(dx,dy)*cfl/(2.0+M_inf);

fprintf(' AT CFL = %g dt = %g \n',cfl,dt);

for nstep = 1:nmax

% rhs Central differencing

Qx_c(JM,KM,:) = 0.5*(Q(JM+1,KM,:) - Q(JM-1,KM,:))/dx;
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Qy_c(JM,KM,:) = 0.5*(Q(JM,KM+1,:) - Q(JM,KM-1,:))/dy;

for m = 1:3

R(JM,KM,m) = 0.0;

for n = 1:3

R(JM,KM,m) = R(JM,KM,m) + ...

A(m,n)*Qx_c(JM,KM,n) + ...

B(m,n)*Qy_c(JM,KM,n) ;

end

end

% $$$ You can add these next 4 lines and

% $$$ run the code with cfl = 0.1 for 1000 steps

% $$$ to see what a reasonable solution would be.

% $$$ I added this in to give you at a sample working code.

% $$$ Remove % line#

% line1 epse = 0.1;

% line2 Qx_d(JM,KM,:) = (Q(JM+1,KM,:) -2*Q(JM,KM,:) + Q(JM-1,KM,:))/dx;

% line3 Qy_d(JM,KM,:) = (Q(JM,KM+1,:) -2*Q(JM,KM,:) + Q(JM,KM-1,:))/dy;

% line4 R(JM,KM,:) = R(JM,KM,:)-epse*(Qx_d(JM,KM,:) + Qy_d(JM,KM,:));
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resid(nstep) = ...

(norm(R(:,:,1)) + norm(R(:,:,2)) + ...

norm(R(:,:,3)))/(3*jmax*kmax);

if nstep == 1 resid_norm = resid(1); end

resid(nstep) = resid(nstep)/resid_norm;

fprintf(' nstep = %g Resid = %g \n',nstep,resid(nstep));

Q(JM,KM,:) = Q(JM,KM,:) - dt*R(JM,KM,:); % Euler Explicit Step

% BC

% At j = 1 if M-inf < 1 Extrap rho

if M_inf < 1.0

Q(1, KM,1) = Q(2, KM,1);

end

% At jmax DQ/Dx = 0 using backward diff.

Q(jmax,KM,1) = Q(jmax-1, KM,1);

Q(jmax,KM,2) = Q(jmax-1, KM,2);

Q(jmax,KM,3) = Q(jmax-1, KM,3);

% At k=1 D rho/Dy = 0, Du/Dy = 0, fix v
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RHO = Q(JM,1,1);

Q(JM,1,1) = Q(JM,2,1);

Q(JM,1,2) = Q(JM,2,2)./Q(JM,2,1).*Q(JM,1,1);

% fixing v, not rho v so this little rescaling is necessary

Q(JM,1,3) = Q (JM,1,3)./RHO.*Q(JM,1,1);

% At kmax fix all do nothing

end

% Fix up corners for plot

Q(1,1,:) = Q(2,1,:);

Q(jmax,1,:) = Q(jmax-1,1,:);

Q(1,kmax,:) = Q(2,kmax,:);

Q(jmax,kmax,:) = Q(jmax-1,kmax,:);

figure;

subplot(2,2,1);

surf(X,Y,Q(:,:,1)');

xlabel('x');
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ylabel('y');

zlabel('rho');

view(-25,50);

subplot(2,2,2);

U = Q(:,:,2)./Q(:,:,1);

V = Q(:,:,3)./Q(:,:,1);

surf(X,Y,U');

xlabel('x');

ylabel('y');

zlabel('u');

view(-25,50);

subplot(2,2,3);

P = Q(:,2,1);

cp = (P - 1.0)/(0.5*M_inf^2);

plot(x,-cp);

xlabel('x');

ylabel('-cp');
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subplot(2,2,4);

semilogy([1:nmax],resid);

xlabel('n');

ylabel('resid');

title(['Euler Explicit',' CFL = ',num2str(cfl),...

' M_{\infty} = ',num2str(M_inf)]);
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Project #8,10: Assignment

1. Program the Euler Explicit scheme Eq. 10 with the Flux Split

form, Eq. 11 for a uniform grid on the domain (�1 � x � 3,

0 � y � 2) using � = 0:1. Use 1st,2nd and 3rd order one-sided

di�erences for �bx; �
f
x ; �

b
y; and �fy .

2. Project #8:Replace the Euler Explicit scheme with Fourth-Order

Runge-Kutta and compare the performance and other aspects

discussed below.

3. Project # 10:Replace the Euler Explicit scheme with

Third-Order Runge-Kutta and compare the performance and

other aspects discussed below.
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RK4, Project # 8

1. The RK4 scheme is de�ned as

bQn+1=2 = Qn +
1

2
hR(Q)n

~Qn+1=2 = Qn +
1

2
hR( bQ)n+1=2

Q
n+1

= Qn + hR( ~Q)n+1=2

Qn+1 = Qn +
1

6
h [R(Q)n

+2
�
R( bQ)n+1=2 +R( ~Q)n+1=2

�
+

R(Q)n+1
�

(12)

2. Note: the proper use of bQ; ~Q;Q is very important!
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RK3, Project # 10

1. The RK3 scheme is de�ned as

bQ = Q(n) + 1
4hR(Q)

(n)

~Q = Q(n) + 8
15hR(Q)

(n)

Q = bQ+ 5
12hR(

~Q)

Q(n+1) = bQ+ 3
4hR(Q) (13)

2. Note: the proper use of bQ; ~Q;Q is very important!
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Project #8,10 Assignments

1. Discuss the spatial accuracy of this method, e.g., what is ert or

what is the modi�ed wave number? Hint Remember, we are

working with a linear coupled system. To do the analysis you

need to think in terms of the decouple representative equations.

2. Knowing the � � � relation for the Euler explicit and RK4 O�E,

come up with a stability condition and convergence estimates for

di�erent di�erencing orders. One possible CFL de�nition for this

system is

CFL =
h (max(�(A)) +max(�(B)))

min(dx; dy)
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3. Study various CFL numbers (remembering the numerical

stability condition!), to see if your analysis is consistent with

your results.

4. Pick one of the two below

(a) Program up at least one more method O�E method and

compare it's performance, accuracy and stability with your

results above. Look at the other projects for suggestions or

just pick one from the textbook or other sources.
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i. Note: It is not necessary to redo the accuracy and stability

analysis for this method, although you may want to make

sure it is stable and accurate.)

ii. Suggestion: Take a look at Lax-Wendro� (see notes). You

could even use an unstable scheme, although I prefer a

stable one.

(b) Program the Euler Implicit scheme and compare it's e�ciency

with the Euler explicit results. You can do this with a central

di�erence implicit operator or an LU operator. See the Linear

Euler Equation Project #9, for more details.
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Project #9 Euler Implicit / Flux Splitting

� Applying Euler Implicit time di�erening (h = �t)

Q(n+1) = Q(n) + hR(Q)(n+1) (14)

R(Q) = �A
@Q

@x
�B

@Q

@y

� Discretize the �eld using a uniform grid with xj;k = (j � 1)�x

and yj;k = (k � 1)�y.

� Matries A;B can be � ux split into A+; B+ and A�; B� as

discussed in class.

� New system to be solved with

R(Q)
(n+1)
j;k = �A+�bxQ

(n+1)
j;k �A��fxQ

(n+1)
j;k

�B+�byQ
(n+1)
j;k �B��fyQ

(n+1)
j;k (15)
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where e.g., �bx is a backward di�erencing operator and �fx is a

forward di�erencing operator.

� Equation 14 along with Eq. 15 can be integrated from the

uniform initial condition Q(0) =

0
@ 1

M1

0

1
A to a steady state.
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Assignment, Project #9

1. Program the Euler Implicit scheme Eq. 14 with the Flux Split

form, Eq. 15 for a uniform grid on the domain (�1 � x � 3,

0 � y � 2) using � = 0:1. Use 1st order one-sided di�erences for

�bx; �
f
x ; �

b
y; and �fy .

2. The system is already in linearized form so that the implicit

operators can be de�ned in a number of ways, e.g., keeping the x

operators together results in the large two-dimensional implicit

matrix operator, or one could factor the x and y operators or do

an upper-lower factorization. Pick an approach for the implicit

operator and program it up.
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Some suggested choices are:

(a) Unfactored: leads to the large two-dimensional implicit

operator. This is the most work intensive choice, it could be

fun.

(b) Block-Tri-Diagoanal Factored: Keep A+ and A� terms

together and B+ and B� terms together, i.e., this produces

the standard spatial factorization of x and y.

(c) Lower-Upper Facrotization: Keep A+ and B+ terms together

and A� and B� terms together producing

Lower-Block-Tri-Diagonal and Upper-Block-Tri-Diagonal

Operators.
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3. Find the expression for the � � � relation for your choosen

method. What is the accuracy of this method, i.e., what is er�?

hint Remember, we are working with a linear coupled system. To

do the analysis you need to think in terms of the decouple

representative equations.

4. One possible CFL de�nition for this system is

CFL =
h (max(�(A)) +max(�(B)))

min(dx; dy)

Study various CFL numbers. What type of stability do you see?

Is your analysis consistent with your results?
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5. Program up at least one more method O�E method and

compare it's performance, accuracy and stability with your

results above. Look at the other projects for suggestions or just

pick one from the textbook or other sources.

(a) Note: It is not necessary to redo the accuracy and stability

analysis for this method, although you may want to make

sure it is stable and accurate.)

(b) Suggestion: Choose one of the other possibilities I gave you

above. How does it compare in terms of stability or e�ciency.
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PROJECT #8: Example
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PROJECT #9: Example
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PROJECT #11: NONLINEAR EULER EQUATIONS

� Project solves the unsteady Euler equations for vortex

propagation.

� The initial condition is a �nite core vortex which will propagated

from left to right at a �xed speed, M1.

� The domain is periodic in x, so boundary conditons a simple.

� The Euler equations in two dimensions can be written as

@Q

@t
+
@E(Q)

@x
+
@F (Q)

@y
= 0 (16)
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Q =

0
BB@

�

�u

�v

e

1
CCA ; E =

0
BB@

�u

�u2 + p

�uv

(e+ p)u

1
CCA ; F =

0
BB@

�v

�uv

�v2 + p

(e+ p)v

1
CCA (17)

with the equation of state for pressure is

p = (( � 1))(e� 1
2�(u

2 + v2)), temperature T = p
� and  = 1:4.

� Note: Q;E; F are 4� 1 vectors.
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Problem Setup

� Geometry: Uniform grid:: 0 � x � 10 and 0 � y � 10.

� Boundary conditions: Periodic in x and y. Note the domain is

rectangular with limits (0; 10), but the ow is assumed to be

periodic over those limits.

� Initial conditions and exact solution:

� A �nite core vortex embedded in a free stream ow

Q1 = (�1;M1; 0; e1)

� With �1 = 1:0;M1 = 0:; p1 = 1:0; and T1 = 1:0.

� The perturbed (by the vortex) �eld is

T = T1 �
�2( � 1)

16��2
e2�(1�r

2) (18)
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� = T
1

(�1) (19)

u =M1 �
�

2�
(y � y0)e

�(1�r2) (20)

v =
�

2�
(x� x0)e

�(1�r2) (21)

� � the vortex strength (use � = 5:0) and � = 0:5 is the gaussian

width scale.

� The vortex is initally centered at x0 = 5:0 and y0 = 5:0 and

r =
p
(x� x0)2 + (y � y0)2
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Apply the Euler Explicit

� Euler explicit time di�erening (h = �t),

Q(n+1) = Q(n) + hR(Q)(n) (22)

R(Q)(n) = �
@En

@x
�
@Fn

@y
(23)

� Use nx, # points in x and y (keep the aspect ratio square)

� Let �x = �y = 10:0
nx�1 .

� Discretize the �eld using a uniform grid with xj;k = (j � 1)�x
and yj;k = (k � 1)�y, for j = 1; 2; 3; : : : nx� 1 and
k = 1; 2; 3; : : : nx� 1.

� Note the computational domain falls short of 10 by �x and �y, in x and y respectively, since

e.g. x = 0 and x = 10:0 are the same location because of the periodicity conditions.
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Flux Splitting Method in space.

� Flux Jacobians are A = @E
@Q and B = @F

@Q .

� The matries A;B can be � ux split into A+; B+ and A�; B� as

discussed in class.

� New split uxes are de�ned as E� = A�Q and F� = B�Q.

� This produces the new system to be solved with

R(Q)
(n)
j;k = ��bx(E

+)
(n)
j;k � �fx(E

�)
(n)
j;k

��by(F
+)

(n)
j;k � �fy (F

�)
(n)
j;k (24)

� �bx: backward di�erencing operator, �fx :forward di�erencing.
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Sample Project Code

� A sample Matlab code is provided for you.

� Euler explicit time di�erencing with central space di�erencing.

� Unstable for all CFL = �tM1
�x , but will run for awhile at low

CFL. Try CFL = 0:1 and nx = 21.

� Produces plots of the vortex as it propagates from left to right,

through the right boundary reappearing at the left boundary and

continuing on.

� You can pick the number of revolutions of the vortex and for an

inputted CFL compute the number of time steps to complete the

revolutions.
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% Euler_vortex V1.0

% Final Project

%

% THP 11/06/2006

%

%

% Flow is Assumed to be a compresible vortex

% see: vortex_exact.m for details.

%

% Euler equations are written as

%

% DQ DE DF

% -- + -- + -- = 0

% Dt Dx Dy

%

% where: | rho u | | rho |
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% E = | rho u^2 + p |, Q = | rho u |

% | rho u v | | rho v |

% | (e + p) u | | e |

%

% where: | rho v |

% F = | rho u v |, p = (gamma-1)*(e-0.5*rho(u^2+v^2))

% | rho v^2 + p |

% | (e + p) v | gamma = 1.4

%

% Inputs:

% nx : Number of points accross domain in x and y

%

% cfl : dt = min(dx,dy)*cfl/(M_inf) M_inf: Mach number (0.5)

%

% revolutions : Number of passes of vortex around periodic domain.

%
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clear;

fig1 = 0;

fig2 = 0;

M_inf = 0.5;

gamma = 1.4;

gm1 = (gamma-1);

% Grid Generation

xmin = 0.0;

xmax = 10.0;

ymin = 0.0;

ymax = 10.0;

nx = 21;

ss = ['Enter nx Default = ' num2str(nx) ' : '];
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bb = input(ss); if size(bb) ~= 0 nx = bb; end

dx = (xmax-xmin)/(nx-1);

dy = (ymax-ymin)/(nx-1);;

x = [xmin:dx:xmax-dx]';

y = [ymin:dy:ymax-dy]';

jmax = size(x,1);

kmax = size(y,1);

[X,Y] = meshgrid(x,y);

time = 0;

ivar = 1;

pvar = 1;

x0 = 5.0; y0 = 5.0;

Q = vortex_exact(M_inf,0.0,X',Y',jmax,kmax,x0,y0);
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QE = Q;

rho_ex_min = min(min(Q(:,:,1)));

% Jacobian Matrices

A = zeros(jmax,kmax,4,4);

B = zeros(jmax,kmax,4,4);

% Indices

J = [1:jmax];

K = [1:kmax];

JM = [2:jmax-1];

KM = [2:kmax-1];

JPLUS = J+1;

JMINUS = J-1;
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JPLUS(jmax) = 1;

JMINUS(1) = jmax;

KPLUS = K+1;

KMINUS = K-1;

KPLUS(kmax) = 1;

KMINUS(1) = kmax;

cfl = 0.2;

ss = [ 'Enter cfl Default = ' num2str(cfl) ' : '];

bb = input(ss); if size(bb) ~= 0 cfl = bb; end

dt = cfl*dx/(M_inf);

fprintf(' AT CFL = %g dt = %g \n',cfl,dt);

revolutions = 0.1;
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ss = [ 'Enter revolutions Default = ' num2str(revolutions) ' : '];

bb = input(ss); if size(bb) ~= 0 revolutions = bb; end

nmax = floor((10.0)*revolutions/dt/M_inf);

disp([' Nmax = ' num2str(nmax)]);

for nstep = 1:nmax

time = nstep*dt*M_inf;

rho = Q(:,:,1);

u = Q(:,:,2)./rho;

v = Q(:,:,3)./rho;

e = Q(:,:,4);

P = gm1*(e-0.5*rho.*(u.^2+v.^2));
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E(:,:,1) = Q(:,:,2);

E(:,:,2) = Q(:,:,2).*u + P;

E(:,:,3) = Q(:,:,3).*u;

E(:,:,4) = (e+P).*u;

F(:,:,1) = Q(:,:,3);

F(:,:,2) = Q(:,:,2).*v;

F(:,:,3) = Q(:,:,3).*v + P;

F(:,:,4) = (e+P).*v;

Qx_c(J,K,:) = 0.5*(E(JPLUS,K,:) - E(JMINUS,K,:))/dx;

Qy_c(J,K,:) = 0.5*(F(J,KPLUS,:) - F(J,KMINUS,:))/dy;

R = Qx_c + Qy_c;

% $$$ You can add these next 5 lines and run the code with cfl = 0.1

% $$$ for 1 revolution to see what a reasonable solution would be.
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% $$$ I added this in to give you at a sample working code.

% $$$ Remove % $$$ from the next lines

% $$$ epse = 1.0;

% $$$ Qx_d(J,K,:) = (Q(JPLUS(JPLUS(J)),K,:) - 4*Q(JPLUS(J),K,:) ...

% $$$ + 6*Q(J,K,:) - 4*Q(JMINUS(J),K,:) + Q(JMINUS(JMINUS(J)),K,:))/dx;

% $$$ Qy_d(J,K,:) = (Q(J,KPLUS(KPLUS(K)),:) - 4*Q(J,KPLUS(K),:) ...

% $$$ + 6*Q(J,K,:) - 4*Q(J,KMINUS(K),:) + Q(J,KMINUS(KMINUS(K)),:))/dy;

% $$$ R(J,K,:) = R(J,K,:) + epse/12.0*(Qx_d(J,K,:) + Qy_d(J,K,:));

resid = norm(R(:,:,1)) /(jmax*kmax);

if resid > 1e5 disp('Residual Exceed 10^5'); break; end

Q = Q - dt*R; % Euler Explicit Step
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rho_min_error = abs(min(min(Q(:,:,1)))-rho_ex_min);

if mod(nstep,10) == 0 fprintf(' nstep = %g Time = %g Rho Min Error = %g \n',nstep,time,rho_min_error); end

end

fig2 = figure; %set(gcf,'Position',[950 100 800 800]);

subplot(2,2,1);

surf(X',Y',Q(:,:,1));

xlabel('x');

ylabel('y');

zlabel('rho');

T1 = '2^{nd} Order Central';

T2 = ' Euler Explicit';
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T3 = [ ' \Delta t = ' num2str(dt) ' CFL = ',num2str(cfl) ' M_{\infty} = ',num2str(M_inf)];

suptitle({[ T1 T2]; [T3 ]});

subplot(2,2,2);

contour(X',Y',Q(:,:,1),40);

xlabel('x');

ylabel('y');

zlabel('rho');

grid on;

subplot(2,2,3);

Error(:,:) = Q(:,:,1)-QE(:,:,1);

surf(X',Y',Error);

xlabel('x');
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ylabel('y');

zlabel('rho - rho_{exact}');

subplot(2,2,4);

plot(x,Q(J,floor(kmax/2)+1,1),'ro');

hold on;

plot(x,QE(J,floor(kmax/2)+1,1),'k-');

xlabel('x');

ylabel('rho');
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Project #11: Assignment

1. Program the Euler Explicit Eq. 22 with the Flux Split, Eq. 24.

2. Use 1st,2nd and 3rd order one-sided di�erences for �bx; �
f
x ; �

b
y; and

�fy .

3. Replace the Euler Explicit scheme with Fourth-Order

Runge-Kutta and compare the performance and other aspects

discussed below.
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(a) The RK4 scheme is de�ned as

bQn+1=2 = Qn +
1

2
hR(Q)n

~Qn+1=2 = Qn +
1

2
hR( bQ)n+1=2

Q
n+1

= Qn + hR( ~Q)n+1=2

Qn+1 = Qn +
1

6
h [R(Q)n

+2
�
R( bQ)n+1=2 +R( ~Q)n+1=2

�
+

R(Q)n+1
�

(25)

(b) Note: the proper use of bQ; ~Q;Q is very important!
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4. Discuss the spatial accuracy of this method, e.g., what is ert for

the various di�erences or what is the modi�ed wave number?

Hint Remember, we are working with a non-linear coupled

system. To do the analysis you need to think in terms of the

decouple representative equations.

5. Knowing the � � � relation for the Euler explicit and RK4 O�E,

come up with a stability condition and convergence estimates for

di�erent di�erencing orders. One possible CFL de�nition for this

system is

CFL =
h max(�(A); �(B))

min(dx; dy)
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6. Study various CFL numbers (remembering the numerical

stability condition!), to see if your analysis is consistent with

your results.

7. Pick one:

(a) Do a grid re�nement accuracy study to verify the truncation

error for each di�erence choice, .i.e. 1st; 2nd and 3rd Order

upwind. Set up a sequence of runs with decreasing grid

(increasing nx) and time step sizes. The best way to do this is

to intergrate to �xed time, say one revolution. Keep in mind

you should keep the CFL number �xed, that is, as you

decrease �x you should correspondingly decrease �t. Plot

the log(error) (error can be de�ned as the l2 norm of the

di�erence between the computed density and the exact

density) against log(�x). If the error � O(�xp) then, for

example, on a loglog plot a O(�xp) method should have a
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slope of p. Verify this for your results.

(b) Program up at least one more method O�E method and

compare it's performance, accuracy and stability with your

results above. Look at the other projects for suggestions or

just pick one from the textbook or other sources.

i. Note: It is not necessary to redo the accuracy and stability

analysis for this method, although you may want to make

sure it is stable and accurate.)

ii. Suggestion: Take a look at Lax-Wendro� (see notes). You

could even use an unstable scheme, although I prefer a

stable one.

(c) Program the Euler Implicit scheme and compare it's e�ciency

with the Euler explicit results. You can do this with a central

di�erence implicit operator or an LU operator. See the Linear

Euler Equation Project #9, for more details.
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PROJECT #11: Example

RK4    ∆ t = 0.1  CFL = 1.0504  M
∞
 = 0.5

1st Order Flux Split
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PROJECT #11: Example

RK4    ∆ t = 0.1  CFL = 1.5092  M
∞
 = 0.5

3rd Order Flux Split
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General Instructions

� Follow the instructions given above and address each of the

assignments.

� You will need to provide me with a short writeup of what you

have done, along with some results and �gures.

� This can be handwritten, typeset or WORD, pdf �le.

� Perform all the computations using MATLAB.

� I want copies of all the source codes by email.

� This project will account for 50% of your grade. I will be judging

it on the write-up and a working code (I will run all the codes

you send me).
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